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Abstract

Transonic Blade-Vortex Interactions (BV1) are simulated numerically and the noise mechanisms

are investigated. The two-dimensional high frequency transonic small disturbance equation is solved

numerically (VTRAN2 code). An ADI scheme with monotone switches is used; viscous effects are

included on the boundary and the vortex is simulated by the cloud-in-cell method. The Kirchhoff

method is used for the extension of the numerical two-dimensional near-field aerodynamic resu'ts to

the linear acoustic three-dimensional far-field. The viscous effect (shock/boundary layer interaction)

on BVI is investigated. The different types of shock motion are identified and compared. Two

important disturbances with different directivity exist in the pressure signal and are believed to be

related to the fluctuating lift and drag forces. Noise directivity for different cases is shown. The

maximum radiation occurs at an angle between 60 ° and 90 ° below the horizontal for an airfoil-fixed

coordinate system and depends on the details of the airfoil shape. Different airfoil shapes are studied

and classified according to the BVI noise produced.
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** Graduate student.

Part of this work was presented at the AHS 46th Annual Forum, Washington, DC, May 21-23 1990.



In references [16-24] the _vo-dimensional transonic BVI problem is also solved using the small

disturbance theory and the more complex Euler and thin-layer Navier Stokes equations. Also Baeder

et al. [22, 23] and Liu et al. [24] presented some near and mid field results. A direct comparison of

the results obtained from the different methods (from small disturbance to Navier Stokes equations)

shows that the results are very similar [7]. In fact the results tend to coincide the further away we

move from the airfoil surface. At _eat distances from the airfoil though, the waves become very

difficult to follow because of numerical diffusion and dispersion errors.

The Kirchhoff method was introduced [14, 25-29] to extend the numerically calculated

nonlinear aerodynamic results to the linear acoustic far-field. This method uses a Green's function

for the linearized governing equation to derive a representation for the solution in terms of its values

and derivatives on a closed surface S in space, which is assumed to include all the nonlinear flow

effects and noise sources. The potential and its derivatives can be numerically calculated from a

nonlinear aerodynamic code (e. g. VTRAN2). The Kirchhoff method has the advantage of including

the full diffraction effects and eliminates the erroneous propagation of the reactive near-field.

In this paper we examine the noise due to BVI. The viscous effect (shock/boundary layer

interaction) on BVI noise is studied. The resulting noise because of the different types of shock-wave

motion types A, B and C in the near- and the far-field is investigated and the different resulting

disturbances are analyzed. The noise mechanisms are explained physically and the relation between

the noise signal and oscillating lift and drag forces is shown. The complicated directivity patterns of

BVI noise are also studied. Different airfoil shapes are studied and classified according to the

produced BVI noise.

The Numerical Method (VTRAN2)

VTRAN2 is a code [13, 14] developed for analyzing the interactions of convected regions of

vonicity with airfoils using transonic small disturbance theory. It is based on the ADI implicit scheme

of the LTRAN2 code [8] with the inclusion of the high frequency term as described in reference [9]

and the addition of regions of convected vorticity using the cloud-in-cell and muhiple branch-cut

approach. The code was modified to include viscosity [8] and monotone switches [10].
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where

The equation for the unsteady transonic small-disturbance potential _ is:

A_t t + 2B_x t = Cqbxx + qbyy (1)

k2M2 kM2 l-M2 - (Y+I) Mm q_x,
A- 82/3, B - 82/3, C =

q_is the disturbance-velocity potential, M is the free-stream Mach number, 8 is the airfoil thickness

ratio and k is the reduced frequency ox:/U o where m is the characteristic frequency of the unsteady

motion, c is the airfoil chordlength and U o is the free stream velocity. The quantities x, y, t, _ in

equation 1 have been scaled by c, c/81/3, 03-I, and c8 2/3 U o, respectively. The exponent m in the

nonlinear term is chosen as m = 2, which is suitable for stronger shocks as it locates the shocks more

accurately [30].

For BVI the characteristic frequency of the motion depends on the lateral distance between the

airfoil and the vortex path. For large miss distances Yv the characteristic frequency 03 is Uo/y v and

thus k=c/Yv<< I. Therefore, the k2 term in A implies that the first term (i. e. high frequency term) in

equation (1) can be dropped giving the low frequency small disturbance theory, which was used in

the LTRAN2 code. However, for BVI cases of interest yv=C, and thus k=l and the full small

disturbance equation (1) (including the high frequency term) is needed. Since time t is

nondimensionalized, the choice of k for the case of BVI is irrelevant and was taken as k=l (m=Uo/c),

meaning that one time unit corre_q_onds to a free stream convection of one chord.

The boundary conditions are:

1. Upstream outer boundary condition:

_x = q_y = 0

2. Lateral outer boundary condition:

0_x= _y =0

°

as x->- _ (2)

as y -> + ,,,,

Downstream outer boundary condition:

qbx+ k _t = 0 as x -> + _,

Airfoil surface boundary condition (applied at y=0):

aY+_ av+
qby= a-T+k-N- as0<x<c

(3)

(4)

(5)

°
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where Y+ defines the airfoil surface.

For the viscosity calculations the viscous ramp method (wedge) is used. The viscous ramp model

simulates the shock/boundary layer interaction by placing a wedge-nosed ramp at the base of the shock to

obtain the reduced shock pressure rise. The surface geometry must be augmented by the ramp model by

adding an extra viscous term in the boundary condition of equation (5). Details of the calculation of that

viscous term can be found in reference [31]. The ramp model was derived for steady-state computations.

However, it can be incorporated into unsteady computations in a quasi-steady fashion. Thus, the model

is valid for low frequencies, and its use in high frequency problems such as BVI can only give some

qualitative information about the effect of viscosity with almost no additional CPU time. The more

complicated and CPU time-consuming lag-entrainment method which was also incorporated in our code

was not used, because it was not superior to the wedge model for unsteady cases [31].

The classical Kutta condition is satisfied by this small disturbance formulation. We are

interested in cases for which the reduced frequency range is less than 4, which is the limit for the

application of the Kutta condition [32].

The pressure coefficient Cp in the unsteady small-disturbance theory is:

Cp = -252/3( qSx+ k _t) (6)

In addition, the wake condition

Fx + kFt = 0 (7)

implies that a branch cut exists between the trailing edge and the downstream outer boundary, across

which the potential jump is, 40 = F, where F is the circulation.

A finite vortex core is used (cloud-in-cell method) for reasons of computational stability. The

core has a finite square shape limited by gridlines and the vorticity is bilinearly distributed inside.

Thus, several branch cuts (in the x-direction) are introduced. The vortex can have a free path

(convected by the flow) or a prescribed path (miss distance Yv = constant, vortex velocity=Uo).

Details of the theoretical formulation were given by Chang [33] and Lyrintzis [ 14].

An ahemating direction implicit (ADI) method is used for the solution of the equation, ',,.'here the

high frequency term is added in the y-sweep. An approximate factorization technique with monotone



,# _o

switches [11] is used for the steady calculation, which provides a start-up solution. Special care is

taken for the conservative differentiation along the uneven mesh.

A (213x199) mesh is used for the calculations. The computational mesh points are clustered

more densely near and in front of the airfoil and then are stretched exponentially from the near airfoil

region to about 200 chords from the airfoil in x and 400 in y-direction. More mesh points are added

in the y-direction for the more accurate evaluation of the normal derivatives on the Kirchhoff surface.

The VTRAN2 code was shown to agree well _ith other, more complex approaches including Euler

and thin-layer Navier-Stokes computations [7]. The code has a high vectorization level and the CPU

time for each two-dimensional case on a Cray-2 computer is about 4 minutes for 800 time-marching

steps.

Kirchhoff's Method for the Far-Field

The Kirchhoff equation for a moving surface was originally derived by Morgans [34]. A

Green's function approach will be used to derive the Kirchhoff formula in a coordinate system fixed

to the airfoil which moves with velocity U o. The Green's function approach was introduced by

Morino [35, 36]. Faras_t and Myers [37] rederived the Kirchhoff equation for an arbitrarily moving

piecewise smooth deformable surface using generalized derivatives. A very brief discussion of the

Kirchhoff formulation is given in the following para_aphs; for more details the reader is referred to

the above references, and also references [14, 26].

A Green's function for the linearized governing equation is used to derive a representation for

the solution in terms of its values and derivatives on a closed surface S in space, which is assumed to

include all the nonlinear flow effects and noise sources. A full three-dimensional formulation is used,

because the Green's function is simpler in this case, and because the method can be easily extended to

include spanwise variations to model three-dimensional BVI. The pressure distribution outside a

rigid fixed surface is

1_[1 _0p_+ 10p 3ro 3X'o Oro]
P(x°'Y°'Z°) =- 4_ _o Ono Coro[32 Ot ( n_noo-- M _ ) + ro_o22n_ooJ 't dS'o (8)
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where ro = {(x_x,)2+132[(y_y,)2+(z_z,)2] }1/2

[ro-M(x-x')]

col32

= (1-M2)l/2

where ..... denotes a point on the Kirchhoff surface, subscript o denotes the transfomaed values

using the well known Prandtl-Glaucrt transformation:

Xo=X, yo = 13y, Zo = 13z

n is the outward vector normal to the surface S, and subscript x implies the evaluation at the retarded

time tl= t-x.

Thus, the values of the potential and its normal derivatives on an arbitrary surface around the

spanwise extent of an arbitrary flow are enough to give the far-field radiation at any arbitrary external

point. In our work we use a rectangular box coinciding with mesh points in order to simplify the

computation. The control volume is shown in figure 3. The potential and its derivatives can be

numerically calculated from an aerodynamic near-field code.

Since Kirchhoffs method assumes that linear equations hold outside this control surface S, it

must be chosen large enough to include the region of nonlinear behavior. However, due to increasing

mesh spacing the accuracy of the numerical solution is limited to the region immediately surrounding

the moving blade. As a result S cannot be so large as to lose accuracy in the numerical solution for

the mid-field. Therefore, a judicious choice of S is required for the effectiveness of the Kirchhoff

method. A rectangular box-shaped surface (fig. 3) is used for the calculations. The VTRAN2 code

is used to calculate the solutions on the surface S. The y-limits of S for our calculations are varied

over a range from Ys = 0.25 to 4.00 chords distance from the airfoil. Higher Mach numbers yield

higher optimum values for Ys because of stronger nonlinearities in the larger lateral extent of the flow

region. The x-limits for S were also varied between 0.15 and 0.50 chords and, similarly, values of

0.25 chords upstream and downstream of the leading and trailing edges respectively, are chosen.

Strip theory approximation is used; that is, the two-dimensional VTRAN2 solution is applied on

different segments of the blade in a stripwise manner. Blade segments ranging from two to sixteen in

aspect ratio are used. Usually mesh limitations keep the Kirchhoff surface close enough to the blade

where the two-dimensional strip theory solution is still valid. By making calculations with or without
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the inclusion of the tip surfaces we found [27] that they have only a small effect; thus they were

neglected for most of the calculations.

Types of Unsteady Shock Motion

Tijdeman [38] showed experimentally, using an oscillating flap, that varying airfoil surface

boundary conditions can give three different types of unsteady shock motion (figure 4):

Type A shock motion, where the shock at the rear of the supersonic region merely moves back and

forth with concurrent Changes in strength.

Type B shock motion, where the shock moves similarly to type A, but disappears temporarily during

the unsteady motion.

Type C shock motion, where the supersonic region disappears, but a shock wave leaves the airfoil

and propagates forward to the far-field.

The above three types of unsteady shock motions affect heavily the characteristics (e. g. lift, drag) of

all unsteady transonic flows. The type of shock motion that occurs in a given situation depends on

the flow characteristics (e. g. free stream Mach number, airfoil shape, amplitude and frequency of the

unsteady motion). These types of shock motion can even be observed in steady airfoils with severe

flow separation downstream of the shock waves. Their existence in BVI has been verified by

different experiments and calculations (e. g. Tangler's experiments [39!).

Results and Discussion

Some mid-field calculations for BVI are performed using VTRAN2 with a refined mesh to

follow the waves of interest. Then the Kirchhoff method is used to look at the noise at the far-field.

The caIcuIations are made in an airfoil-fixed reference frame. A more detailed discussion of the

coordinate systems used for BVI calculations is given in reference [25].

The three different types of the unsteady shock motion are studied. We use a NACA 64A006

airfoil, the vortex strength was Clv=0,4 (Clv is a nondimensional measure of the vortex strength:

Clv=2F/cUo) and the vortex miss-distance yo=-0.5 chords, for a fixed vortex path. The initial vortex

position is -9.51 chords and the free stream velocity is one (arbitrary units) so th,: vortex passes

below the airfoil leading edge at time T = 9.51. The Mach numbers of 0.875, 0.854, and 0.822
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correspond to shock wave motions of types A, B, and C, respectively, as also shown in reference

[7]. For the Kirchhoff surface (fig. 3) we used a span of 8 chords, xs = 0.25 chords and Ys = 3.5,

2.5 and 1.9 chords for the three types A, B and C, respectively. Note that a larger Ys is required for

higher Mach numbers, because the y-extent of the nonlinear region of the flow increases, as expected

from the scaling laws of transonic flow.

Figure 5 shows the effect of the grid on the lift coefficient ClCl'). A standard mesh (213xl 19) is

compared to a finer in the y-direction mesh (213x199). The results show that the fine mesh produces

a smoother solution. Smoother solutions are also produced for the pressure coefficient at different

points, especially in the far-field using the Kirchhoff method. Finer meshes were also tried, but the

results were not substantially changed. Thus, the fine mesh (213x199) will be used in the subsequent

calculations.

Figures 6, 7 and 8 show the effect of viscosity in the calculations. The pressure coefficient

Cp(T) at point P (-0.3000, -0.17478), the lift coefficient CI(T) and the drag coefficient C_.d(T) are

plotted for a type A shock motion, for viscous and nonviscous calculations. We can see only a slight

influence of the effect of viscosity. Since viscosity is added as an extra boundary condition to model

shock/boundary layer interaction, we expect the influence to be stronger with the increase of the

strength of the shock. Thus, the effect of viscosity is lower for the types B and C (not shown) and

zero for subcritical cases. The following results will include the effect of the viscosity,.

Figures 9 and 10 show the Cp(T) signal of the three types of unsteady shock motion in the mid-

field (point P) from VTRAN2 and in the far-field (point O, r=20 chords, 0=30 °) from Kirchhoff.

The signal consists of three disturbances (I, II, III) as also shown in references [25, 26]. The

primary disturbance I is the main BVI noise and it originates at the airfoil when the vortex passes

below the leading edge. It is believed to be related to the fluctuating lift coefficient CI. The

secondary disturbance II corresponds to the unsteady shock motion and depends on the motion of the

whole supersonic region induced by the vortex passage. It originates at the airfoil at a later time, and

depends heavily on the type of shock motion. It is believed to be somehow related to the fluctuating

drag coefficient C.d. The exist_'nce of the second disturbance was observed co:nputationally by

George and Chang [7] and was also verified experimentally by Caradonna et al. [40] and Shenoy
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[41], and computationally by George and Lyrintzis [25, 26], Owen and Shenoy [20] and Liu et al.

[24]. Disturbance II disappears if we run subcritical cases. The directivity of the two disturbances is

very different as will be shown later. Disturbance II_ is consider&l to be an standing disturbance due

to the vortex passage and it is not a propagating wave. Thus this disturbance disappears as we move

from the mid-field (fig.9) to the far-field (fig. I0).

From figures 9 and 10 we can see that disturbance I increases slightly with increasing Mach

number. We should also bear in mind that the definition of Cp includes division by M 2, so the effect

of the Mach number is stronger than it appears in the above figures. Disturbance II exists also for

type A and B shock motions, because it is caused by the movement of the whole supersonic pocket.

and seems to be magnified as we move into the far-field. It also appears to be decreasing as we move

from type C to type A. However, if we measure it from peak to peak it still increases, but at a lower

rate from disturbance I. Disturbance HI is almost same for the three cases, which seems reasonable

since the same vortex strength is used.

Figure 11 shows the lift coefficient C1 (T) for types A, B and C. We can see that their shapes

relate well to the first disturbances shown in previous figures. Specifically the total Ct change for the

type A shock motion is much higher than that for type C. Thus, we can deduce that disturbance I is

most probably related to C1.

The drag coefficient Cd will be discussed next. It is well known that in subcritical inviscid flow

Cd is zero. It should be noted though, that Cd is not zero for subcritical inviscid flow due to

numerical errors of the code, but it is much lower than the Cd in supercritical cases. Thus, the

calculated Cd values are only indicative and will be used only for comparison of the three unsteady

types of shock motion. When the flow becomes supercritical, then Cd is not theoretically zero, even

for inviscid flow, because of the formation of supersonic pockets. Cd can be easily calculated if the

pressure distribution is known. Figure 12 shows Cd (T) for types A, B and C. The Cd signal

seems to catch some part of the second disturbance whereas CI does not. This was also detected by

Liu et al. [24] for some BVI cases using a thin layer Navier Stokes code, but is easier to see in the

case of an oscillating flap [15], because there the periodicity of the m__tion is well-defined. Thus, we
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can conclude that the second disturbance is most probably related to the fluctuating Cd caused mainly

by the movement of the supersonic pocket.

In order to verify the above arguments we compared results from airfoils with the same

thickness distribution (i. e. same family) but different camber, in conditions producing the same lift

(i. e. different angle of attack). Figure 13 compares the Cp(T) BVI signals for the far-field (point O)

for a NACA 1406 airfoil at an angle of attack or=0 o, for a NACA (0.5)406 at oc=0.536 ° and for a

NACA 0006 at ot=l.051 o. These conditions, with a standing vortex upstream, produce initial

C1=0.229. In fact, the whole unsteady lift CI(T) for these cases is almost the same, whereas the

unsteady drag Cd(T) is not. All the airfoils have a type A shock motion for these conditions. We can

see from figure 13 that disturbance I remains unchanged, whereas disturbance II does change,

becoming higher as the camber increases. This agrees with our earlier discussion of lift and drag

forces.

We also looked at the effect of the point of maximum camber. In figure 14 we compared tile

Cp(T) BVI signals for the far-field (point O) for NACA airfoils with different point of maximum

camber: 1306 and 1406, for angles of attack that produce the same lift: o:=0.055 ° and 0 o,

respectively. We can see from figure 14 that disturbance I remains unchanged, whereas disturbance

II becomes larger as the point of maximurri camber moves downstream. Thus, the 1406 airfoil has

tile larger disturbance II.

From figures 13 and 14 we can conclude that disturbance I is related to the lift and disturbance

II is related to the details of the airfoil shape, which produce a different supersonic pocket and thus a

different drag. Symmetric airfoils and airfoils with the point of maximum camber further upstream

Eve a lower value of disturbance II, for the same lift.

A parametric study showed [26] that the vortex strength has a strong effect on the noise signal,

whereas the vortex miss distance has only a weak effect. The maximum airfoil thickness and the

details of airfoil shape were also found to be important. A more detailed parametric study is currently

[29] being carried out.

The directivity of the noise signal in the far-field is very complicated, as has been shown by

experimental studies. Most of these experiments are also three-dimensional, which makes them very

11



difficult to compare. For example, in reference [42] it was shown for a model helicopter rotor that the

maximum signal can have a different direction if the advance ratio g is varied.

Directivity is studied in a vortex-fixed coordinate system keeping the distance from the vortex rv

constant (rv = 50 chords). The relationship between 0 and 0v is shown in figure 15. The Cp(t)

signal for different directions is plotted in figures 16, 17, 18 for types A, B and C shock motion,

respectively (note that span = 4 chords for this case). By analyz!ng the plots, we can see that

disturbance I is getting weaker as the direction angle 0 increases from 0 o to 90 ° (forward directivity).

Disturbance II is getting stronger as the direction angle 0 increases from 0O to 90 ° (downward

directivity). The two disturbances also move closer as the angle 0 is increased, and finally almost

merge at 0 =120 o. This implies a different origin. If the origin of disturbance I is at the airfoil

leading edge, the origin of disturbance II is probably somewhere downstream since this disturbance is

related to the movement of the supersonic pocket.

It should be noted that for an oscillating flap [15] the opposite directivity was observed:

downward for disturbance I and forward for disturbance IL Thus, it was concluded that disturbance

I is due to the dipole produced from oscillating lift and disturbance II is produced from oscillating

drag. If we run a subcrifical case then disturbance II disappears, as expected, and the directivity of

disturbance I is downward (disturbance increases as 0 is increased from 0 o to 90o). In both

disturbances the directivity observed was not expect_ to be exactly the one described by a pure

dipole, because of various nonlinearities (i. e. supersonic pocket) and source noncompactness.

However, a main dipole-like behavior, as the one detected in the oscillating flap case [15], was

expected. The reason that the directivity is different for an oscillating flap and BVI seems to be

related to the difference in phase between the two disturbances. Disturbance II has a higher frequency

than disturbance I and also a different phase with respect to disturbance I. Thus, it may add or

subtract differently in different directions for various cases. In the oscillating flap case the frequency

and the phase difference are better forced than they are in the BVI case.

Now we will compare the noise signals resdlting from types A, B and C shock motion (figs 16,

17 and 18, respectively). The two disturbances keep approaching each other as angle 0 is increased

because of the different disturbance origin. Angles 0 = 70 ° and 60 ° , seem to give the maximum
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signal, if we measurefrom peakto peak,for typesA andB respectively. (If we only look at the

maximumabsolutevaluethenO= 0° seemsto producethegreatestnoise).For thecaseof typeC we

canseethat the whole region betweenO= 60° and0 = 90° producesabout the samenoise. For

subsoniccases(notshown)themaximumnoiseis90°, asit wasmentionedabove.

Figure 19showsthe directivity of the BVI for a NACA 0006 airfoil. In this casethe two

disturbancesarecloserto eachotherthanthepreviousNACA 64A006cases.If we increase0, the

two disturbancesnow fall on top of each other more quickly (O= 90°). The noisebecomes

maximumat 0=90°, butstill the noise at 0=60 ° and 70 ° is not much lower. Similar observations can

be made for all the other 4-digit airfoils tried (e. g. 1306, 1406, (0.5)406).

From the preceding discussion of BVI noise directivity we can conclude that the maximum

noise occurs at around O = 60 ° - 90 ° (Ov = 10O - 30o), and depends on both disturbances I and II,

but also on the phase difference between the two disturbances, that can be different for various airfoil

shapes.

In order to isolate the effect of disturbance II in the maximum noise we compared (figure 20) the

Cp(T) signal at the same point (O = 90 ° and rv = 50 chords) for NACA airfoils 0006, (0.5)406 and

1406 for the conditions specified before for figure 13 (i. e. same lift). It can be noted that the two

disturbances are almost merged at this point. We can also see that the NACA 1406 airfoil has a larger

signal, which is consistent to the fact that the same airfoil has a larger disturbance II as shown in

figure 13.

In figure 21 we compared the signal for NACA airfoils with different points of maximum

camber: 1306 and 1406, for angles of attack that produce the same lift: ct=0.055 o and 0 o,

respectively. We looked at the point of maximum noise: 0 = 90 ° and rv = 50 chords. We can see

that the 1406 airfoil has the l,'u'ger sisal, as expected since the same airfoil has a larger disturbance II

as shown in figure 14.

We also ran the previous 4-digit airfoils at subsonic Mach numbers at conditions producing the

same lift. They all produced the same BVI disturbance at all angles, as expected (no disturbance II

was observed). In conclusion, symmetric airfoils and airfoils with a point of maximum camber

farther upstream seem to give less BVI aoise for transonic conditions producing the same lift.
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Conclusions

An existing numerical finite difference code VTRAN2 was modified to analyze noise due to

transonic BVI. The two-dimensional unsteady transonic small disturbance equation was solved

numerically using ADI techniques with monotone switches including viscous effects due to shock-

boundary interaction and the cloud-in-cell method for the simulation of the vortex. The Kirchhoffs

method was used to extend the numerically calculated two-dimensional near-field aerodynamic results

to the three-dimensional linear acoustic far-field.

The viscous effect (shock/boundary layer interaction) on BVI noise was studied and was found

to have only a weak influence. The effect of the three types of unsteady shock motion (A, B and C)

was also investigated. The unsteady pressure coefficients Cp(t) showed the existence of two main

disturbances. The first one (/) is believed to be associated with the fluctuating lift coefficient (C1) and

has a strong forward directivity while the second one (II) is believed to be associated with the

fluctuating drag coefficient (C-d) caused by the movement of the supersonic pocket and has a strong

downward directivity. The maximum radiation occurs at an angle 0 between 60 ° and 90 ° below the

horizontal for an airfoil-fixed coordinate system and depends on both disturbances I and II and the

details of the airfoil shape. Symmetric airfoils, and airfoils with a point of maximum camber further

upstream seem to give less BVI noise for conditions producing the same lift.

It is hoped that this work can contribute toward the better understanding of the mechanisms of

noise due to transonic BVI. In the future, we will study the influence of the details of airfoil shape,

especially near the leading edge. We will also include the effects of an oscillating airfoil at the same

time with a BVI that can be useful in actual helicopter cases (feathering).
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